
Spectrum of short-wavelength magnons in a two-dimensional quantum Heisenberg

antiferromagnet on a square lattice: third-order expansion in 1/S

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 216003

(http://iopscience.iop.org/0953-8984/22/21/216003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 08:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/21
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 216003 (7pp) doi:10.1088/0953-8984/22/21/216003

Spectrum of short-wavelength magnons in
a two-dimensional quantum Heisenberg
antiferromagnet on a square lattice:
third-order expansion in 1/S

A V Syromyatnikov

Petersburg Nuclear Physics Institute, Gatchina, St Petersburg 188300, Russia
and
Department of Physics, St Petersburg State University, Oulianovskaya 1, Petrodvorets,
St Petersburg 198504, Russia

E-mail: syromyat@thd.pnpi.spb.ru

Received 26 January 2010, in final form 13 April 2010
Published 30 April 2010
Online at stacks.iop.org/JPhysCM/22/216003

Abstract
The spectrum of short-wavelength magnons in a two-dimensional quantum Heisenberg
antiferromagnet on a square lattice is calculated to the third order in a 1/S expansion. It is
shown that a 1/S series for S = 1/2 converges quickly in the whole Brillouin zone except in the
neighborhood of the point k = (π, 0), at which absolute values of the third-and the
second-order 1/S-corrections are approximately equal to each other. It is shown that the
third-order corrections make deeper the roton-like local minimum at k = (π, 0), improving the
agreement with recent experiments and numerical results in the neighborhood of this point. It is
suggested that the 1/S series converges slowly near k = (π, 0) also for S = 1 although the
spectrum renormalization would be small in this case due to the very small values of high-order
1/S corrections.

1. Introduction

A spin- 1
2 two-dimensional (2D) Heisenberg antiferromagnet

(AF) on a square lattice has been one of the most attractive
theoretical objects in the last two decades because this
model describes parent compounds of high-Tc superconducting
cuprates [1]. A number of theoretical approaches have
been proposed to describe the spectrum of long-wavelength
elementary excitations (magnons) in a quantum square 2D AF
the results of which agree well with each other and describe
quantitatively existing experimental data [1–3]. Meantime
there are some surprising recent experimental and numerical
findings, indicating that the standard theoretical approaches do
not work for short-wavelength magnons for S ∼ 1.

Thus, a roton-like local minimum was observed at small
T in the spin-wave spectrum εk at k = (π, 0) in a number
of recent experiments on square spin- 1

2 2D AFs [4, 5, 3, 6].
In particular, the magnon energy at k = (π, 0) appears
to be 7(1)% smaller than that at k = (π/2, π/2) in
Cu(DCOO)2·4D2O [3]. This local minimum is a purely

quantum effect as the classical spectrum of a 2D AF is flat
along the magnetic Brillouin zone (BZ) boundary connecting
points (π, 0) and (0, π) (see inset in figure 1). The spectrum
near the point k = (π, 0) is not reproduced quantitatively
within the second order in the 1/S expansion [7, 8] and phase
flux resonating valence bond techniques [9]. In the former case
the second-order corrections lead to a very small difference
of 1.4% between ε

(2)

(π,0) ≈ 2.358 58 and ε
(2)

(π/2,π/2) ≈ 2.391 99
whereas in the last case this difference is too large. At the same
time numerical computations using a series expansion around
the Ising limit [10] and quantum Monte Carlo [11] describe the
roton-like minimum satisfactorily, leading to values ε

(series)
(π,0) ≈

2.18(1), ε
(series)
(π/2,π/2) ≈ 2.385(1) and ε

(MC)

(π,0) ≈ 2.16, ε
(MC)

(π/2,π/2) ≈
2.39, respectively. The origin of the local minimum has not
been clarified yet. It is considered to be a signature of the spins’
entanglement on neighboring sites [3].

Existence of such a strong deviation of the spectrum near
k = (π, 0) from the result obtained in the second order in
1/S is quite surprising because the second-order corrections
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Figure 1. Spin-wave spectrum of a spin- 1
2 AF along high-symmetry

paths of the BZ shown in the inset. Here ε
(i)
k indicates the spectrum

calculated within the i th order in 1/S so that i = 0 corresponds to
the classical spectrum (10). Results of the series expansion around
the Ising limit and quantum Monte Carlo (QMC) computation
(available only for k = (π, 0) and (π/2, π/2)) are also shown which
were taken from [10] and [11], respectively. The former results
describe quantitatively the spectrum observed experimentally [3] in
Cu(DCOO)2·4D2O.

(This figure is in colour only in the electronic version)

are much smaller than the first-order ones in the whole BZ
even for S = 1/2 (see [7] and below) and one could expect
a small contribution from high-order terms. Moreover, it is
well known that the 1/S series for staggered magnetization,
transverse susceptibility, ground state energy, and spin-wave
stiffness of a 2D AF calculated up to the third order in 1/S
converges surprisingly fast even for S ∼ 1 despite the absence
of a small parameter in the theory [1, 12–14, 8, 15]. As a
result the quantitative agreement is very good between the 1/S
expansion, numerical results, and experiments. It should be
stressed that quantum renormalization of these quantities is
considerable for S ∼ 1. For instance, quantum fluctuations
reduce the staggered magnetization in spin- 1

2 2D AF from its
bare value of 0.5 to about 0.3. Meantime this renormalization
is described quantitatively by the first few terms of the 1/S
series.

We present in this present paper the results of a spectrum
ε

(3)
k calculation to the third order in 1/S and demonstrate

that the 1/S series converges very fast in the whole BZ
except in the vicinity of the point k = (π, 0) in the case
of S ∼ 1. In particular, we show that absolute values of
the third-order corrections to the spectrum at k = (π, 0) are
approximately equal to and only 2.5 times smaller than the
second-order ones for S = 1/2 and S = 1, respectively. Thus,
our results demonstrate that, unlike other quantities, quantum
renormalization of the spectrum near k = (π, 0) for S ∼ 1
is described by a slowly converging 1/S series. We find that
the excitation energy in a spin- 1

2 2D AF ε
(3)

(π,0) ≈ 2.3241(2)

is 3.2% smaller than ε
(3)

(π/2,π/2) ≈ 2.4007(2) which improves
(but still does not make perfect) the agreement with the recent
experiments and numerical results (see figure 1). We suggest
that, despite the slow convergence of the 1/S series, the overall

renormalization of the spectrum for S = 1 might be small due
to very small values of high-order 1/S corrections.

The rest of this paper is organized as follows. We present
the basic transformation of the Hamiltonian and describe the
technique in section 2. Spectrum renormalization is discussed
in section 3. Section 4 contains our conclusion. Expressions
for self-energy parts in the third order in 1/S are presented in
an appendix.

2. Basic transformations and techniques

The Hamiltonian of the Heisenberg AF on a square lattice with
interaction between only nearest neighbor spins has the form

H = J

2

∑

〈i, j〉
Si S j . (1)

We put exchange constant J = 1 in all particular numerical
calculations performed in the present paper. It is convenient to
represent spins components in the local coordinate frame using
the Dyson–Maleev transformation in the following way:

S j = Sx
j x̂ + (Sy

j ŷ + Sz
j ẑ)e

ik0R j , (2)

Sx
j =

√
S

2

(
a j + a†

j − a†
j a

2
j

2S

)
,

Sy
j = −i

√
S

2

(
a j − a†

j − a†
j a

2
j

2S

)
,

Sz
j = S − a†

j a j ,

(3)

where x̂ , ŷ, and ẑ are unit vectors along corresponding axes
and k0 = (π, π) is the AF vector. As a result one finds that
the Hamiltonian (1) acquires the form H = E0 + ∑6

m=1 Hm ,
where E0 is the classical value of the ground state energy and
Hm denote terms containing products of m operators a and a†.
Hm = 0 for odd m and one has for even m

H2 =
∑

k

[
Eka†

kak + Bk

2
(aka−k + a†

ka†
−k)

]
, (4)

H4 = − 1

2N

∑

k1,2,3,4

a†
−1(J2+3a†

−2 + J3a2)a3a4, (5)

H6 = 1

8SN2

∑

k1,2,3,4,5,6

J1+3+4a†
−1a†

−2a3a4a5a6, (6)

where Jk = 2(cos kx + cos kz), Ek = S J0, Bk = S Jk, N is the
number of spins in the lattice, we drop index k in equations (5)
and (6) and the momentum conservation laws

∑4
i=1 ki = 0 and∑6

i=1 ki = 0 are implied in equations (5) and (6), respectively.
Introducing Green’s functions G(k) = 〈ak, a†

k〉ω, F(k) =
〈ak, a−k〉ω, Ḡ(k) = 〈a†

−k, a−k〉ω, and F†(k) = 〈a†
−k, a†

k〉ω,
where k = (ω, k), we have two sets of Dyson equations for
them one of which has the following form:

G(k) = G(0)(k) + G(0)(k)�̄(k)G(k)

+ G(0)(k)[Bk + �(k)]F†(k),

F†(k) = Ḡ(0)(k)�(k)F†(k) + Ḡ(0)(k)[Bk + �†(k)]G(k),

(7)

2
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where G(0)(k) = (ω − Ek)
−1 is the bare Green’s function and

�(k), �̄(k), �(k), and �†(k) are self-energy parts. By solving
equations (7) and similar sets of equations for Ḡ(k) and F(k)

one obtains

G(k) = ω + Ek + �(k)

D(k)
,

Ḡ(k) = −ω + Ek + �̄(k)

D(k)
,

F(k) = − Bk + �(k)

D(k)
, F†(k) = − Bk + �†(k)

D(k)
,

(8)

where

D(k) = ω2 − (ε
(0)
k )2 − �(k), (9)

ε
(0)
k =

√
E2

k − B2
k = S

√
J 2

0 − J 2
k , (10)

�(k) = Ek(� + �̄) − Bk(� + �†) − ω(� − �̄)

− ��† + ��̄, (11)

G(k) = Ḡ(−k), �(k) = �̄(−k), and ε
(0)
k is the spin-

wave spectrum in the linear spin-wave approximation (classical
spectrum). Quantity �(k) given by equation (11) describes
renormalization of the spin-wave spectrum square. We find
�(k) within the first three orders in 1/S in section 3 calculating
the corresponding diagrams for the self-energy parts shown in
figure 2.

It should be noted that we do not use the conventional
Bogolyubov transformation in the technique described to
diagonalize the bilinear part of the Hamiltonian (4). As a
result anomalous Green’s functions F(k) and F†(k) arise and
momenta lie in the chemical BZ that is twice as large as the
magnetic one. Such an approach proved to be more convenient
as intermediate calculations turn out to be more compact while
the final results are equivalent to those obtained using the
conventional approach [16–20].

3. Spectrum renormalization

Although the spectrum renormalization within the first two
orders in 1/S is well known, we present here the corresponding
expressions for the sake of completeness.

3.1. First order in 1/S

Only one diagram of the Hartree–Fock type shown in
figure 2(a) contributes to the spectrum renormalization in the
first order in 1/S. The result can be represented in the form

�(a)(k) = J0(A + B), (12)

�(a)(k) = Jk A, (13)

�†(a)(k) = Jk(A + 2B), (14)

ε
(1)
k = ε

(0)
k

(
1 + 2(A + B)

2S

)
= ε

(0)
k

(
1 + 0.158

2S

)
, (15)

where the following two constants are introduced:

A = 1

N

∑

k

S J 2
k

2J0ε
(0)
k

≈ 0.2756, (16)

Figure 2. Diagrams contributing to the self-energy parts in the first
three orders in 1/S. Bold lines in diagrams (b), (f), and (h) denote
Green’s functions of the first order in 1/S (i.e. Green’s functions
given by equations (8) with self-energy parts calculated in the first
order in 1/S). The bold line in diagram (e) denotes Green’s functions
of the second order in 1/S. Only diagrams (d) and (h)–(k) lead to the
spectrum dispersion along the magnetic BZ boundary.

B = − 1

N

∑

k

S J0 − ε
(0)
k

2ε
(0)
k

≈ −0.1966. (17)

It is seen from equation (15) that the renormalized spectrum
remains flat on the BZ boundary in the first order in 1/S
because Jk = 0 for |kx | = π − |kz|. We draw ε

(1)
k for S = 1/2

in figure 1 using equation (15).

3.2. Second order in 1/S

Diagrams (b)–(d) shown in figure 2 contribute to self-energy
parts in the second order in 1/S. Diagram (b) is a schematic
representation of the correction from diagram (a) of the second
order in 1/S which arises after calculation of the diagram (a)
with Green’s functions of the first order in 1/S (i.e. Green’s
functions given by equations (8) with self-energy parts given
by equations (12)–(14)).

3.2.1. Diagrams (b) and (c). It is convenient to group
expressions for diagrams of the Hartree–Fock type (b) and (c)
with the result

�(bc)(k) = 0, (18)

�(bc)(k) = Jk
A(A − 2B)

2S
, (19)

�†(bc)(k) = Jk
A2 + B2 + AB

S
, (20)

where A and B are given by equations (16) and (17),
respectively. As �(bc)(k),�†(bc)(k) ∝ Jk, these diagrams
do not contribute to the spectrum dispersion along the BZ
boundary.

3
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Table 1. Expressions are presented of the spin-wave spectrum ε
(3)

k

within the third order in 1/S at some representative points. Here ε
(0)

k
is the classical spectrum given by equation (10). The corresponding
values of ε

(3)
k are also shown for S = 1/2. Notice the smallness of

the second-order 1/S-corrections as compared with the first-order
ones for all points and all S. In contrast, the absolute value of the
third-order correction is approximately equal to the second-order one
at k = (π, 0) for S = 1/2.

ε
(3)
k

k Arbitrary S S = 1/2
(

π

4 , 0
)

ε
(0)

k

(
1 + 0.157 95

2S + 0.024 76
(2S)2 − 0.0033(3)

(2S)3

)
1.2290(3)

(
π

2 , 0
)

ε
(0)
k

(
1 + 0.157 95

2S + 0.028 79
(2S)2 − 0.0042(1)

(2S)3

)
2.0482(2)

(
3π

4 , 0
)

ε
(0)
k

(
1 + 0.157 95

2S + 0.025 38
(2S)2 − 0.0118(1)

(2S)3

)
2.3179(2)

(π, 0) ε
(0)

k

(
1 + 0.157 95

2S + 0.021 34
(2S)2 − 0.0172(1)

(2S)3

)
2.3241(2)

(
3π

4 , π

4

)
ε

(0)
k

(
1 + 0.157 95

2S + 0.029 67
(2S)2 − 0.0065(1)

(2S)3

)
2.3622(2)

(
π

2 , π

2

)
ε

(0)

k

(
1 + 0.157 95

2S + 0.038 05
(2S)2 + 0.0043(1)

(2S)3

)
2.4007(2)

(
3π

4 , 3π

4

)
ε

(0)
k

(
1 + 0.157 95

2S + 0.029 14
(2S)2 − 0.0005(1)

(2S)3

)
1.6781(2)

3.2.2. Diagram (d). One obtains for corrections to the self-
energy parts from diagram (d)

�(d)(k) = 1

N2

∑

k1+k2+k3=k

1

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)2)

× ((S J0(ε1 + ε2 + ε3) − ωε1)

× ( 1
2 S2 Jk J1 J2 J3 + S2 J 2

2 J 2
3 − 2S2 J0 J1−k J2 J3

+ S2 J2 J2−k J3 J3−k + J 2
1−k(S2 J 2

0 − ε2ε3))

− (ε1 + ε2 + ε3)(S3 J1 J 2
2 J3 J2−k

+ S Jk J1 J1−k(S2 J 2
0 − ε2ε3))), (21)

�(d)(k) = 1

N2

∑

k1+k2+k3=k

ε1 + ε2 + ε3

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)2)

× (− 1
2 S3 J 3

1 J2 J3 + 2S3 J0 J2 J2−k J 2
3 − S3 J1 J 2

2−k J2 J3

− S J1 J2−k J3−k(S2 J 2
0 − ε2ε3)), (22)

�†(d)(k) = 1

N2

∑

k1+k2+k3=k

ε1 + ε2 + ε3

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)
2)

× (− 1
2 S3 J 2

k J1 J2 J3 + 2S3 J0 Jk J1 J2−k J3 − S3 J 3
1 J2 J3

+ 2S3 J0 J1 J1−k J 2
2 − S3 J 2

1−k J1 J2 J3

− (2S Jk J 2
1 + S J1 J2 J3 + 2S J0 J1 J1−k

+ S J1 J2−k J3−k)(S2 J 2
0 − ε2ε3)), (23)

where we drop the superscript (0) in ε
(0)

1,2,3 to simplify the
notation. Sums in equations (21)–(23) over each momentum
were calculated numerically by summing up L2 points in the
BZ with some particular values of L ranging from 20 to 200
and extrapolating the results to L = ∞ using the formula
A∞+A1/L+A2/L2+· · ·, as done in previous papers [15, 7, 8].
Appropriate symmetry of the summands was also used.

In accordance with previous results [7, 8] we obtain that
this diagram leads to a very small difference of 1.4% between
ε

(2)

(π,0) ≈ 2.358 58 and ε
(2)

(π/2,π/2) ≈ 2.391 99. It is seen from

table 1 that the second-order corrections are much smaller than
the first-order ones in the whole BZ for all S. The spectrum
ε

(2)
k is presented in figure 1 for S = 1/2.

3.3. Third order in 1/S

One has to analyze in this order the diagrams shown in
figures 2(e)–(k). Diagram (e) represents the second-order
correction from diagram (a) which should be calculated using
equations (12)–(23). Bold lines in diagrams (f) and (h) denote
Green’s functions of the first order in 1/S. Expressions for
the self-energy parts in this order are quite complicated and
the reader is referred to the appendix for some detail of the
calculations. It can be shown (see appendix) that diagrams
of the Hartree–Fock type presented in figures 2(e)–(g) do not
change along the BZ boundary so that only diagrams (h)–(k)
give rise to the spectrum dispersion in these directions in this
order. In contrast to the second-order corrections (21)–(23)
one has to calculate triple sums over momenta in the third
order; this procedure requires much computer time. Then,
we focus on short-wavelength magnons as their spectrum
renormalization is expected to be most pronounced and
calculate ε

(3)
k in a number of points with |k|, |k − k0| � π/8.

The results are presented in figure 1 (for S = 1/2) and in
table 1.

It is seen from table 1 that the third-order corrections are
noticeable only for S ∼ 1 and only in the vicinity of the point
k = (π, 0). In particular, absolute values of the third-and
the second-order corrections in 1/S are approximately equal
to each other at k = (π, 0) for S = 1/2. The excitation energy
in a spin- 1

2 2D AF ε
(3)

(π,0) ≈ 2.3241(2) is 3.2% smaller than

ε
(3)

(π/2,π/2) ≈ 2.4007(2) which improves the agreement with the
recent experiments and numerical results leaving it, however,
far from being perfect. Thus, our calculations demonstrate that
quantum renormalization of the spectrum near k = (π, 0) for
S = 1/2 is described by a slowly converging 1/S series.

It is also seen from table 1 that at k = (π, 0) the third-
order correction is only 2.5 times smaller than the second-order
one for S = 1. Thus, one can expect a slow convergence of the
1/S series near k = (π, 0) also for S = 1. Meantime the
overall renormalization of the spectrum would be small due to
very small values of high-order 1/S terms.

4. Conclusion

To conclude, we calculate the spin-wave spectrum of a 2D
AF on a square lattice in the third order in 1/S to examine
the convergence of the 1/S series. Within the first two
orders we recover the previous results [7, 8] showing that
the second-order corrections are much smaller than the first-
order ones in the whole BZ and for all S (see table 1). Our
calculation of the spectrum in the next order demonstrates that
the third-order corrections to the spectrum are much smaller
than the second-order ones in the whole BZ except in the
vicinity of the point k = (π, 0) in the case of S ∼ 1. In
particular, their absolute values are approximately equal at
k = (π, 0) for S = 1/2 (see table 1 and figure 1). Thus,
our results demonstrate that, unlike other quantities, quantum

4
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renormalization of the spectrum near k = (π, 0) for S ∼ 1
is described by a slowly converging 1/S series. We find that
third-order corrections for the spectrum improve the agreement
with the recent experiments and numerical results in a spin- 1

2
2D AF. We expect slow convergence of the 1/S series near
k = (π, 0) also for S = 1, while the overall renormalization of
the spectrum would be small in this case due to the very small
values of high-order 1/S corrections.
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Appendix. Expressions for the third-order diagrams

We present in this appendix expressions for self-energy parts
in the third order in 1/S which originate from the diagrams
shown in figures 2(e)–(k). Simple codes have been written
in Mathematica software to generate the majority of these
expressions. To make it compact, we present below an
expression for the sum of anomalous self-energy parts �(k) +
�†(k) rather than for �(k) and �†(k) separately because only
this sum contributes to the spectrum renormalization in this
order (see equation (11)).

A.1. Diagrams (e) and (f)

It is convenient to group contributions from diagrams of the
Hartree–Fock type shown in figures 2(e) and (f). One has after
simple calculations using expressions (12)–(23)

�(ef)(k) = −J0
A3

(2S)2

+ 1

N3

∑

k1+k2+k3+k4=0

S

32ε1ε2ε3ε4(ε1 + ε2 + ε3 + ε4)2

× (−3S2 J 3
1 J2 J3 J4ε1 + J1 J4(−15S2 J 3

2 J3ε1

+ 8S2 J0 J 2
2 J1+4ε4 + 8S2 J0 J3 J4 J2+4(ε1 + ε4)

+ 2J2 J3(3ε1ε2ε3 − S2(3J 2
0 + 2J 2

1+4)ε4))

+ 4(J 2
4 J 2

1+4ε1(−S2 J 2
0 + ε2ε3) − 3J 2

2 J 2
4 (S2 J 2

3 ε1

+ ε2(S2 J 2
0 − ε1ε3)) + J2(4S2 J 3

0 J4 J2+4ε2

+ 2J0 J4ε1(S2 J3 (2J4 J1+4 + J3 J2+4) − 2J2+4ε2ε3)

+ S2 J 2
0 J3+4(J3 J2+4(ε1 − ε4) − J4 J1+4ε4)

+ J4 J3+4ε1(−S2 J3 J4 J2+4 + J1+4ε3ε4)))), (A.1)

�(ef)(k) + �†(ef)(k) = Jk
A(B2 + (B − A)2)

2S2

+ 2
Jk

J0
�(ef)(k) + Jk

J0

1

8N3

×
∑

k1+k2+k3+k4=0

1

ε1ε2ε3ε4(ε1 + ε2 + ε3 + ε4)

× (S J3 J4(S2 J 3
1 J2 − 2S2 J0 J1 J2+4 J4

+ (J1 J2 − 2J0 J3+4 + 2J3 J4)(S2 J 2
0 − ε1ε2))), (A.2)

where A and B are given by equations (16) and (17),
respectively. Sums in equations (A.1) and (A.2) were
calculated as described above in section 3.2.2 for diagram (d)
with 20 � L � 96. These sums arise after taking into account
in the Green’s functions involved in diagram (e) contributions
to self-energy parts from diagram (d). We obtain numerically
from equations (A.1) and (A.2) �(ef)(k) = 0.0598(2)

(2S)2 and

�(ef)(k) + �†(ef)(k) = Jk
0.1446(1)

(2S)2 .

A.2. Diagram (g)

Corrections to self-energy parts from another Hartree–Fock
diagram shown in figure 2(g) have the form

�(g)(k) = 1

16N3

∑

k1+k2+k3+k4=0

1

ε1ε2ε3ε4(ε1 + ε2 + ε3 + ε4)

× (S J3 J4(S2 J 3
1 J2 − 2S2 J0 J1 J2+4 J4

+ (J1 J2 − 2J0 J3+4 + 2J3 J4)(S2 J 2
0 − ε1ε2))), (A.3)

�(g)(k) + �†(g)(k) = Jk

J0

1

N3

×
∑

k1+k2+k3+k4=0

1

8Sε1ε2ε3ε4(ε1 + ε2 + ε3 + ε4)

× J1+2(S2(−2S2 J 3
0 J1 J2 + S2 J 4

0 J1+2

− 3S2 J0 J 2
1 J3 J4 + J 2

0 (S2 J1+3(2J2 J3 + J1 J4)

− 2J1+2ε1ε2) + J1 J4(S2 J2 J1+2 J3 + J1+3ε2ε3))

+ (J1+2ε1ε2ε3 + 2S2 J2(−J3 J1+3ε1 + J0 J1ε3))ε4). (A.4)

Notice the identity of sums in equations (A.3) and (A.2). Sums
in equations (A.3) and (A.4) were calculated with 20 � L �
96. We obtain numerically from equations (A.3) and (A.4)
�(g)(k) = − 0.058 92(2)

(2S)2 and �(g)(k)+�†(g)(k) = −Jk
0.028 00(4)

(2S)2 .

A.3. Diagram (h)

It is convenient to divide the corrections from the diagram
shown in figure 2(h) into two parts: �(h)(k) = �

(h)

1 (k) +
�

(h)
2 (k), �(h)(k) = �

(h)
1 (k) + �

(h)
2 (k), and �†(h)(k) =

�
†(h)
1 (k) + �

†(h)
2 (k), where the first terms arise after taking

into account first-order 1/S corrections to self-energy parts in
the numerators of Green’s functions in diagram (d). As a result
one has for them

�
(h)
1 (k) = 1

N2

∑

k1+k2+k3=k

1

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)2)

× ((ε1 + ε2 + ε3)(
1
2 (3A + B)S2 J0 Jk J1 J2 J3

− (3A + 2B)S2 J 2
0 J1−k(Jk J1 + 2J2 J3)

+ AJk J1 J1−kε2ε3 + (3A + B)S2 J0 J 2
2 J 2

3

− (3A + 2B)S2 J 2
1 J1−k J2 J3

+ 3(A + B)S2 J0 J2 J2−k J3 J3−k + 3(A + B)S2 J 3
0 J 2

1−k

− (A + B)J0 J 2
1−kε2ε3) − ωε1(2AS J 2

2 J 2
3

− (2A + B)2S J0 J1−k J2 J3 + 2S(A + B)

× (J2 J2−k J3 J3−k + J 2
0 J 2

1−k) + AS Jk J1 J2 J3)), (A.5)

5
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�
(h)
1 (k) + �

†(h)
1 (k) = 1

N2

×
∑

k1+k2+k3=k

ε1 + ε2 + ε3

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)2)

× (6(A + B)S2 J 3
0 J2 J2−k

− S2 J 2
0 (J3((3A + 2B)J1 J2 + 6(A + B)J1−k J2−k)

+ 2(3A + 2B)J 2
1 Jk) + 1

2 J3(−S2 J1 J2((9A + 4B)J 2
1

+ 12(A + B)J 2
3−k + (3A + 2B)J 2

k )

+ 2(AJ1 J2 + 2(A + B)J1−k J2−k + 2AJ3 Jk)ε1ε2)

+ 2J0(2(3A + 2B)S2 J 2
1 J2 J2−k

+ (A + B)J3(3S2 J2 J1−k Jk − J3−kε1ε2))). (A.6)

Expressions for �
(h)

2 (k), �
(h)

2 (k), and �
†(h)

2 (k) can be easily
obtained from equations (21)–(23) taking into account the
first-order renormalization of the spectrum ε

(1)
k = ε

(0)
k (1 +

(A + B)/S) and the fact that one has to put ε
(1)
k instead of ω

calculating the third-order correction to the spectrum. Sums in
equations (A.5) and (A.6) were calculated with 20 � L � 200.

A.4. Diagrams (i) and (j)

Grouping expressions for diagrams shown in figures 2(i) and (j)
one obtains

�(ij)(k) = 1

N2

∑

k1+k2+k3=k

1

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)2)

× ((S J0(ε1 + ε2 + ε3) − ωε1)

×
(

BS Jk J1 J2 J3 + 2BS J 2
2 J 2

3 − 2(A + B)S J0 J1−k J2 J3

+ 2AS J2 J2−k J3 J3−k + 2

S
AJ 2

1−k(S2 J 2
0 − ε2ε3)

)

+ 2AS J2 J2−k J3 J3−k(S J0(ε1 + ε2 + ε3) + ωε1)

− (ε1 + ε2 + ε3)(
1
2 (3A + 2B)S2 J1 J 2

2 J3 J2−k

+ (A + B)Jk J1 J1−k(S2 J 2
0 − ε2ε3))), (A.7)

�(ij)(k) + �†(ij)(k) = 1

N2

×
∑

k1+k2+k3=k

ε1 + ε2 + ε3

4ε1ε2ε3(ω2 − (ε1 + ε2 + ε3)2)

× (−BS2 J 2
k J1 J2 J3 + (3A + 2B)S2 J0 Jk J1 J2−k J3

− 3BS2 J 3
1 J2 J3 + 2(3A + 2B)S2 J0 J1 J1−k J 2

2

− 4AS2 J 2
1−k J1 J2 J3 − 4AS2 J 2

0 J1−k J2−k J3

− (4B Jk J 2
1 + 2B J1 J2 J3 − 2(A + B)J0 J1 J1−k

+ 2AJ1 J2−k J3−k)(S2 J 2
0 − ε2ε3)). (A.8)

Sums in equations (A.7) and (A.8) were calculated with 20 �
L � 200.

A.5. Diagram (k)

Expressions stemming from this diagram are very cumber-
some. We present here only an expression for �(k)(k) in
the most compact form (i.e. before integration over energies)
for the particular case of the momentum k lying on the BZ

boundary (i.e. for |kx | = π − |kz| and Jk = 0) that has the
form

�(k)(k) = −i
1

N3

∑
(−8F1G5Ḡ2Ḡ3Ḡ4 J1−k J2 J2−k

− 8F4G1G3Ḡ2Ḡ5 J1 J1−k J4−k−8F4 F5G1G3Ḡ2 J1 J4 J4−k

− 8F2G3G5Ḡ1Ḡ4(2J 2
1−k J2 + J2−k J4 J4−k)

− 8F1 F2 F5G3G4 J1 J1−k J2+4

− 8F5G2G3G4Ḡ1 J1−k J2 J2+4

− 8F3Ḡ1Ḡ2Ḡ4Ḡ5 J1−k J4 J2+4−8F4 F5G2G3Ḡ1 J3 J4 J2+4

−8F2 F3Ḡ1Ḡ4Ḡ5 J3 J4 J2+4−8F1Ḡ2Ḡ3Ḡ4Ḡ5 J3−k J4 J2+4

− 8F2 F4 F5G1G3 J1 J4−k J2+4−8F1 F4 F5G2G3 J2 J4−k J2+4

−8G3G5Ḡ1Ḡ2Ḡ4 J2−k J4−k J2+4

− 8G1Ḡ2Ḡ3Ḡ4Ḡ5 J2−k J4−k J2+4

− 8F1 F4 F5Ḡ2Ḡ3 J2−k(J1−k J3 + J4 J2+4)

− 8F1G3G5Ḡ2Ḡ4(J1 J 2
1−k + J3 J4−k J2+4)

− 4F1 F2 F3 F4 F5(J1(2J 2
1−k + 3J 2

2 )

+ 2J4(J1−k J4−k + 2J3−k J2+4))

− 4F2 F3 F4 F5Ḡ1(4J1−k J2 J3 + J2−k(J1 J3 + 2J4−k J2+4))

− 8F2 F5G3G4Ḡ1 J1−k(2J2 J4 + J1−k J3+4)

− 4F4 F5G3Ḡ1Ḡ2(4J1−k(J 2
1−k + J 2

4 )

+ J2−k(J1 J2 + 4J4−k J3+4))

− 8F2 F3 F4 F5G1 J4−k(J2−k J2+4 + J1 J5)

− 8F2 F5G3Ḡ1Ḡ4 J1−k(J2 J4 + J3 J5)

− 16F1 F3 F5G4Ḡ2 J1−k(J2−k J4 + J3−k J5)

− 8F2 F5Ḡ1Ḡ3Ḡ4(2J1−k J2 J4 + J 2
1−k J3+4 + J1 J3−k J5)

− 8F3 F4 F5Ḡ1Ḡ2(2J 2
1−k J2 + J2 J 2

4 + J1−k J4 J3+4

+ J4−k(J2−k J4 + J1 J3+4) + J3 J4 J5)

− 8F3 F4 F5G2Ḡ1(2J 2
1−k J2 + J2 J 2

4

+ J1−k J4 J3+4 + (J3 J4 + J3−k J4−k)J5)

− 8F1 F3 F5Ḡ2Ḡ4(J1(J2 J4 + J1−k J3+4 + 2J3 J5)

+ 2J1−k(J2−k J4 + J3−k J5))

− 8F2G5Ḡ1Ḡ3Ḡ4(2J 2
1−k J2 + J4−k(J1 J3+4 + J3−k J5))

− 8F1 F2 F4 F5Ḡ3(2J 2
1−k J2−k + J1(2J1−k J2 + J4 J3+4)

+ J4 (2J2−k J4 + J2 J4−k + 2J3−k J5))

− 4F1 F4 F5G3Ḡ2(2J2−k J4 J2+4

+ 2J4−k(J3 J3+4 + J1−k J5) + J1(J2 J3 + 2J4 J5))

− 8F2 F5G1Ḡ3Ḡ4((J1 J2 + 2J1−k J2−k)J4−k + J1 J3 J5−k)

− 8F1 F5G3G4Ḡ2(J1 J1−k J4 + J2 J3 J5−k)

− 8F2 F3 F5G1Ḡ4(J1 J1−k J4−k+J2−k(J2 J4−k + J3 J5−k))

− 8F4G1Ḡ2Ḡ3Ḡ5 J2−k(J2 J4−k + J3 J5−k + J1 J2+5)

− 8F1 F5Ḡ2Ḡ3Ḡ4(J2−k(J2 J4 + J3 J5)

+ (J1 J2 + 2J1−k J2−k)J2+5)

− 8F1 F2 F3 F4G5(J2 J2−k J4 + J 2
2 J4−k

+J2−k(J3 J5 + 2J1−k J2+5) + J1(J1−k J4 + J2 J2+5))

− 8F1 F3G5Ḡ2Ḡ4(2J 2
1−k J2−k + J3 J4−k J5

+ J1(2J1−k J2 + J5 J3+5))), (A.9)

where the momentum conservation laws k1 + k2 + k3 =
k1 + k4 + k5 = k are implied. The expression for �(k)(k)

6
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for arbitrary momentum and those for anomalous self-energy
parts are much more cumbersome than equation (A.9) and we
do not present them here. Corresponding sums over momenta
were calculated with 16 � L � 64.
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